

- Why?
- The Science of Memory
- The 5 Big Ideas
- Fluency
- EYFS
- Areas of Maths
- Focus on Addition and Subtraction

Why?

You are here because you want the very best outcomes for your child.

Why?

At St Alban's, we believe that our ambitious maths curriculum ensures that all children know and remember more.

Why?

The Importance of Practice

Why?

The CPA approach

The Science of Memory

Activating prior knowledge

Tom Sherrington (2020)

The Science of Memory

A key challenge for learning is that working memory is limited.

The 5 Big Ideas in Mathematics

Fluency

There are three strands of fluency.

- efficiency carrying out the method easily
- accuracy careful recording, use of key facts and double checking
- flexibility- knowledge of more than one approach.

The 5 Big Ideas in Mathematics

ALL children need a DEEP understanding of the maths they are learning.

Topics last for as long as the children need to grow and embed their learning.

Cardinality and Counting

Understanding that the cardinal value of a number refers to the quantity, or 'howmanyness' of things it represents

Comparison

Understanding that comparing numbers involves knowing which numbers are worth more or less than each other

Composition

Understanding that one number can be made up from (composed from) two or more smaller numbers

Pattern

Looking for and finding patterns helps children notice and understand mathematical relationships

Shape and Space

Understanding what happens when shapes move, or combine with other shapes, helps develop wider mathematical thinking

Measures

Comparing different aspects such as length, weight and volume, as a preliminary to using units to compare later

<u>Number</u>

Have a deep understanding of number to 10, including the composition of each number.

Subitise up to 5.

Automatically recall number bonds up to 5 and some number bonds to 10, including double facts.

<u>Number</u>

Have a deep understanding of number to 10, including the composition of each number. Subitise up to 5.

Automatically recall number bonds up to 5 and some number bonds to 10, including double facts.

<u>Number</u>

Have a deep understanding of number to 10, including the composition of each number.

Subitise up to 5.

Automatically recall number bonds up to 5 and some number bonds to 10, including double facts.

What is Subitising?

What is Subitising?

It is the ability to quickly recognise how many objects are in a group without actually counting them.

Areas of Maths

Place Value

Number

Fractions

Measurement

Geometry Position and Direction Shape Statistics

Ratio and Proportion

Number

Addition and Subtraction

Algebra

10 is made of _____;

____ and ____ make 10.

____ and ____ make 10.

10 is made of ____ and ___; ____ and ____ make 10.

	0

1

$$4,065 - 2,128 = 1,937$$

3,4 ¹0 5 ¹5 − 2 1 2 8 1 9 3 7

There are not enough <u>ones</u>, so I need to exchange 1 <u>ten</u> for 10 <u>ones</u>

At home

We are all mathematicians.

The answer is only the beginning. Our mathematics classes are about learning not performing.

Thank you

"Memory is the residue of thought."

Daniel T Willingham (2008)

We remember what we attend to.